

Regenerable Adsorbent Materials

With the production and distribution of regenerable adsorbent materials we remove arsenic, fluorine, boron, iodine, iron, manganese, ammonia, and sodium from the water. As a bulk filter media this is an excellent solution for water utilities and water technology companies and for some industrial water management providers.

Our continuously manufactured products:

- AsMet Arsenic III and Arsenic V adsorbent
- FluMet Fluoride adsorbent
- BoMet Boron binding adsorbent
- IoMet Iodine De-adsorbent
- ZMet Iron, Manganese, Ammonia, Sodium binding adsorbent

Fields of application:

- · for water utility companies and for water industry companies
- · for communal and industrial wastewater treatment companies
- to treat the process water of power plants, mining and other factories
- for water bottling plants
- for vegetables, fruits, food processing industries

Benefits of the product:

- cerium based adsorber resin flexible use for all user from domestic to waterworks and all water industry players
- can be attached to existing waterworks, or installed newly with suspended solid pre-filter
- lifetime 7-10 years
- regenerable, allowing for smaller filter and lower running cost and leaving smaller environmental footprint
- taste, smell, and mineral content of the water stays the same
- ensure the supply of stable water quality with cost saving long term operation

ASMET for drinking water treatment

- reduces the arsenic concentration to less than 1 μg/l (WHO standard 10 μg/l)
- binds the As (III) and As (V) contents of the water
- temperature should not exceed 50°C some hot springs can be treated

FLUMET for wastewater treatment (steel, aluminium, fertilizer, semiconductor and other industries)

- pH and Redox substances need controlling with pre-treatment, pH is optimal between 3 and 3.5
- adsorbs Fluoride ions under the level 1 mg/l
- maximum fluoride concentration is 30 mg/l

BOMET applying where seawater has boron above permissible health levels, so desalination need to remove it

- best results for boron mitigation are between 30–300 mg/l boron
- salt brines can also be mitigated to produce boron free sea salt

In addition to the traditional and chemical-intensive arsenic mitigation methods **AsMet** is a specially developed filter resin that offers cost-effective, sustainable and low–power solution in the field of water treatment.

ZMET for drinking water treatment

- made from ground natural zeolite mined in Hungary
- general cation exchange potential, for the removal of **Ammonia**, **Phosphates**, **Iron**, **Manganese** etc.

IOMET for drinking water treatment, and for radioactive waste removal

- to remove unhealthy levels of iodine in drinking water
- removes I-131 radioactive iodine nuclear mitigation and reduction of radioactive waste trough concentration is possible

		AsMet	FluMet	BoMet
		Arsenic	Fluoride	Boron
Composition characteristic	Composition	Crystalline aqueous cerium oxide powder on a polymeric support		
	Adsorption (g/l-Ad)	1.1–1.5	10–12	6–8
	Specific gravity	1.4	1.4	1.4
	Average particle diameter	0.7 mm	0.7 mm	0.7 mm
Condition of use	Initial setting	Not necessary	Not necessary	Not necessary
	рН	5.8-8.6	3.0–3.5	7.0–9.0
	Operating temp	50°C max.	50°C max.	50°C max.
	Contaminants that affect adsorption efficiency	Oxidizing / reducing agents, PO4 ³⁻ , B(OH)4 ⁻ , F ⁻ , HCO ³⁻ , SiO ²	Oxidizing / reducing agents, PO4 ³⁻ , Al ³⁺ , Fluorides	Fluorides, PO4 ³⁻ , F ⁻ , HCO ³⁻ , SiO ²
Regeneration conditions		NaOH, NaOCI, HCI	NaOH, HCI	NaOH, HCI