


# **AsMET**

Arsenic removal adsorbent technology



We offer a new, cost-effective, sustainable, and economic water treatment technology over conventional and chemical-intensive arsenic mitigation methods, it is called AsMET. AsMET is a cerium-based regenerable adsorber that can be used to remove arsenic contamination from drinking and industrial water. Regenerable means that as the adsorbent reaches its capacity limit, the media goes through a simple regeneration wash-off process and is ready to be used again for up to 10 years.



#### FIELDS OF APPLICATION

- for water utility companies and for water industry companies
- for agriculture, animal husbandry, vegetables, fruits, and food growing and processing industries, etc.

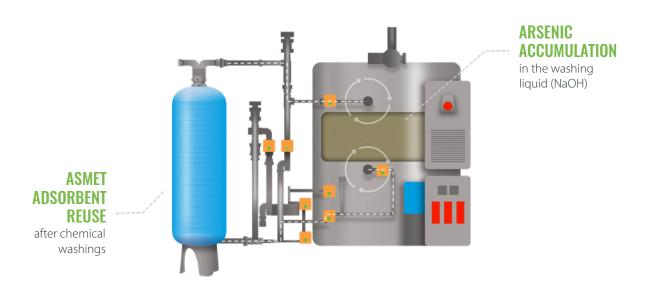
#### THE ASMET ADSORBENT

- adsorbs the arsenic (III) and the arsenic (V) content of the raw water
- however high the arsenic content of raw water ensures that it is below the WHO limit
- expected life span is 7–10 years
- can be used up to 50 °C water temperature
- regeneration is performed with commercial chemicals, expected frequency of the regeneration is varied from the raw water As content
- the system operates without added chemicals
- the material always has to be kept under the water

### **ADVANTAGES OF THE PRODUCT**

- cerium based adsorber resin flexible use for all users from domestic use to waterworks and all the other water industry players
- can be attached to existing waterworks, or installed newly with suspended solid pre-filter
- lifetime 7–10 years
- regenerable, allowing for smaller filters and lower running costs and leaving a smaller environmental footprint
- taste, smell, and mineral content of the water stays the same
- ensure the supply of stable arsenic free water quality with cost-saving long-term operation




#### **TECHNICAL CONDITIONS**

- the material could be piled up to 1.1 meters under water
- the system always uses two tanks of adsorbent in series for the continuous treatment of water, also during regeneration
- required adsorbent quantity can be calculated from the peak capacity of the waterworks (m³/hour)
- 1-liter adsorbent can clean 10 liter/hour of water flow
- under 20  $\mu g$  /l of arsenic content, we can use partial flow treatment

#### PARTIAL FLOW TREATMENT

The AsMET adsorbent purifies the water under 1 $\mu$ g/liter of arsenic level. If the arsenic level in the raw water is low, it is possible to use partial flow treatment to reach the WHO regulation (10  $\mu$ g /liter). It is possible to set the required arsenic content of the treated water. With this process, we can operate the system at a lower cost.

## REGENERATION WASH-OFF PROCESS



Regenerable adsorbent-based drinking water purification – an environmentally friendly, sustainable, cost-effective solution for providing arsenic-free, healthy drinking water.

#### AsMET arsenic removal adsorber

| Characteristic       | arsenic adsorption capacity (g/l-Ad)           | 1.1–1.5g/l                                                                             |
|----------------------|------------------------------------------------|----------------------------------------------------------------------------------------|
|                      | specific gravity                               | 1.4                                                                                    |
|                      | average particle diameter                      | 0.7 mm                                                                                 |
| Conditions<br>of use | initial setting                                | not necessary                                                                          |
|                      | рН                                             | 5.8 – 8.6                                                                              |
|                      | operating temperature                          | 50°C max.                                                                              |
|                      | contaminants that affect adsorption efficiency | oxidizing / reducing agents, $PO_4^{3-}$ , $B(OH)^{4-}$ , $F^-$ , $HCO^{3-}$ , $SiO_2$ |

Conditions of regeneration

NaOH, NaOCI, HCI